Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Authors

  • Mokhtarzadeh, Mehdi K.N. Toosi University of Technology
Abstract:

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification accuracy. In the present paper, a new method is proposed for the spatial features generation of hyperspectral images based on local surface fitting technique. In this method, a surface is fitted to the gray level intensity of the image in the local window around each pixel, and the fitted coefficients, the coefficients of the first and second fundamental forms, curvatures, divergence of the gradient, the area of ​​the gray level intensity of the image and the volume enclosed below the surface are produced in the various window sizes as spatial features. Proposed spatial features stacked with spectral features and form the spectral-spatial vector. this rich spatial-spectral vector is classified with K-nearest neighbor and support vector machine classifiers. The experiments of this paper that are conducted on two real hyperspectral images in agricultural and urban areas show the superiority of the proposed method. The final results show that the overall accuracy of the proposed method in the best case is 7%  higher than other competitor methods.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

full text

An Improved Combination of Spectral and Spatial Features for Vegetation Classification in Hyperspectral Images

Due to the advances in hyperspectral sensor technology, hyperspectral images have gained great attention in precision agriculture. In practical applications, vegetation classification is usually required to be conducted first and then the vegetation of interest is discriminated from the others. This study proposes an integrated scheme (SpeSpaVS_ClassPair_ScatterMatrix) for vegetation classifica...

full text

VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine

Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...

full text

3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery

Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...

full text

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

full text

Data Mining based on Spectral and Spatial Features for Hyperspectral Classification

Hyperspectral remote sensing technique provides fine and detailed spectral information by contiguous and narrow spectral channels. For the traditional classification algorithms, most of them are based on spectral information; spatial information which is useful for the hyperspectral data analysis is paid a little attention to. So, hyperspectral image classification based on effective combinatio...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  1- 19

publication date 2020-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023